我想了解从另一个数组的所有元素中过滤数组的最佳方法。我尝试使用过滤器功能,但是如何给它提供要删除的值并没有解决。
就像是:
var array = [1,2,3,4];
var anotherOne = [2,4];
var filteredArray = array.filter(myCallback);
// filteredArray should now be [1,3]
function myCallBack(){
return element ! filteredArray;
//which clearly can't work since we don't have the reference <,<
}
如果过滤器功能没有用,您将如何实现呢?
编辑:我检查了可能重复的问题,它可能对那些容易理解javascript的人有用。选中的答案很好使事情变得容易。
您可以使用函数的this
参数filter()
来避免将过滤器数组存储在全局变量中。
var filtered = [1, 2, 3, 4].filter(
function(e) {
return this.indexOf(e) < 0;
},
[2, 4]
);
console.log(filtered);
我会做以下事情;
var arr = [1,2,3,4],
brr = [2,4],
res = arr.filter(f => !brr.includes(f));
console.log(res);
var array = [1,2,3,4];
var anotherOne = [2,4];
var filteredArray = array.filter(myCallBack);
function myCallBack(el){
return anotherOne.indexOf(el) < 0;
}
在回调中,检查array
in的每个值是否在anotherOne
https://jsfiddle.net/0tsyc1sx/
如果您使用lodash.js
,请使用_.difference
filteredArray = _.difference(array, anotherOne);
如果您有一个对象数组:
var array = [{id :1, name :"test1"},{id :2, name :"test2"},{id :3, name :"test3"},{id :4, name :"test4"}];
var anotherOne = [{id :2, name :"test2"}, {id :4, name :"test4"}];
var filteredArray = array.filter(function(array_el){
return anotherOne.filter(function(anotherOne_el){
return anotherOne_el.id == array_el.id;
}).length == 0
});
/* Here's an example that uses (some) ES6 Javascript semantics to filter an object array by another object array. */
// x = full dataset
// y = filter dataset
let x = [
{"val": 1, "text": "a"},
{"val": 2, "text": "b"},
{"val": 3, "text": "c"},
{"val": 4, "text": "d"},
{"val": 5, "text": "e"}
],
y = [
{"val": 1, "text": "a"},
{"val": 4, "text": "d"}
];
// Use map to get a simple array of "val" values. Ex: [1,4]
let yFilter = y.map(itemY => { return itemY.val; });
// Use filter and "not" includes to filter the full dataset by the filter dataset's val.
let filteredX = x.filter(itemX => !yFilter.includes(itemX.val));
// Print the result.
console.log(filteredX);
下面的代码是相对于另一个数组过滤数组的最简单方法。两个数组都可以在其中包含对象而不是值。
let array1 = [1, 3, 47, 1, 6, 7];
let array2 = [3, 6];
let filteredArray1 = array1.filter(el => array2.includes(el));
console.log(filteredArray1);
输出: [3, 6]
您的问题有很多答案,但是我看不到有人使用lambda表达式:
var array = [1,2,3,4];
var anotherOne = [2,4];
var filteredArray = array.filter(x => anotherOne.indexOf(x) < 0);
以上所有解决方案均“有效”,但对于性能而言并非最佳,并且都以相同的方式解决该问题,即使用Array.prototype.indexOf或Array.prototype.includes在每个点处线性搜索所有条目。更快的解决方案(即使在大多数情况下,甚至比二进制搜索还要快)将是对数组进行排序,并在前进时跳过,如下所示。但是,缺点是这要求数组中的所有条目都是数字或字符串。但是,在某些罕见情况下,二进制搜索可能比渐进线性搜索更快。这些情况是由于我的渐进线性搜索的复杂度为O(2n 1 + n 2)(仅O(n 1+ n 2)(在更快的C / C ++版本中)(其中n 1是搜索到的数组,n 2是过滤器数组),而二进制搜索的复杂度为O(n 1 ceil(log 2 n 2))( ceil =向上舍入-到上限),最后,indexOf搜索在O(n 1)和O(n 1 n 2)之间具有高度可变的复杂度,平均为O(n 1 ceil(n 2) ÷2))。因此,在以下情况下,indexOf平均只会是最快的(n 1,n 2)等于{1,2},{1,3}或{x,1 |x∈N}。但是,这仍然不是现代硬件的完美代表。在大多数现代浏览器中可以想象到的最大程度上对IndexOf进行了本机优化,使其非常受分支预测法则的约束。因此,如果我们对indexOf的假设与渐进线性和二进制搜索相同(即数组已预先排序),则根据链接中列出的统计数据,我们可以预期IndexOf的速度大约提高6倍,将其复杂度转换为O(n 1 ÷6)和O(n 1 n 2),平均得出O(n 1 ceil(n 2 7÷12))。最后,请注意以下解决方案将永远无法与对象一起使用,因为JavaScript中的对象无法通过JavaScript中的指针进行比较。
function sortAnyArray(a,b) { return a>b ? 1 : (a===b ? 0 : -1); }
function sortIntArray(a,b) { return (a|0) - (b|0) |0; }
function fastFilter(array, handle) {
var out=[], value=0;
for (var i=0, len=array.length|0; i < len; i=i+1|0)
if (handle(value = array[i]))
out.push( value );
return out;
}
const Math_clz32 = Math.clz32 || (function(log, LN2){
return function(x) {
return 31 - log(x >>> 0) / LN2 | 0; // the "| 0" acts like math.floor
};
})(Math.log, Math.LN2);
/* USAGE:
filterArrayByAnotherArray(
[1,3,5],
[2,3,4]
) yields [1, 5], and it can work with strings too
*/
function filterArrayByAnotherArray(searchArray, filterArray) {
if (
// NOTE: This does not check the whole array. But, if you know
// that there are only strings or numbers (not a mix of
// both) in the array, then this is a safe assumption.
// Always use `==` with `typeof` because browsers can optimize
// the `==` into `===` (ONLY IN THIS CIRCUMSTANCE)
typeof searchArray[0] == "number" &&
typeof filterArray[0] == "number" &&
(searchArray[0]|0) === searchArray[0] &&
(filterArray[0]|0) === filterArray[0]
) {filterArray
// if all entries in both arrays are integers
searchArray.sort(sortIntArray);
filterArray.sort(sortIntArray);
} else {
searchArray.sort(sortAnyArray);
filterArray.sort(sortAnyArray);
}
var searchArrayLen = searchArray.length, filterArrayLen = filterArray.length;
var progressiveLinearComplexity = ((searchArrayLen<<1) + filterArrayLen)>>>0
var binarySearchComplexity= (searchArrayLen * (32-Math_clz32(filterArrayLen-1)))>>>0;
// After computing the complexity, we can predict which algorithm will be the fastest
var i = 0;
if (progressiveLinearComplexity < binarySearchComplexity) {
// Progressive Linear Search
return fastFilter(searchArray, function(currentValue){
while (filterArray[i] < currentValue) i=i+1|0;
// +undefined = NaN, which is always false for <, avoiding an infinite loop
return filterArray[i] !== currentValue;
});
} else {
// Binary Search
return fastFilter(
searchArray,
fastestBinarySearch(filterArray)
);
}
}
// see https://stackoverflow.com/a/44981570/5601591 for implementation
// details about this binary search algorithm
function fastestBinarySearch(array){
var initLen = (array.length|0) - 1 |0;
const compGoto = Math_clz32(initLen) & 31;
return function(sValue) {
var len = initLen |0;
switch (compGoto) {
case 0:
if (len & 0x80000000) {
const nCB = len & 0x80000000;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 1:
if (len & 0x40000000) {
const nCB = len & 0xc0000000;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 2:
if (len & 0x20000000) {
const nCB = len & 0xe0000000;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 3:
if (len & 0x10000000) {
const nCB = len & 0xf0000000;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 4:
if (len & 0x8000000) {
const nCB = len & 0xf8000000;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 5:
if (len & 0x4000000) {
const nCB = len & 0xfc000000;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 6:
if (len & 0x2000000) {
const nCB = len & 0xfe000000;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 7:
if (len & 0x1000000) {
const nCB = len & 0xff000000;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 8:
if (len & 0x800000) {
const nCB = len & 0xff800000;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 9:
if (len & 0x400000) {
const nCB = len & 0xffc00000;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 10:
if (len & 0x200000) {
const nCB = len & 0xffe00000;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 11:
if (len & 0x100000) {
const nCB = len & 0xfff00000;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 12:
if (len & 0x80000) {
const nCB = len & 0xfff80000;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 13:
if (len & 0x40000) {
const nCB = len & 0xfffc0000;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 14:
if (len & 0x20000) {
const nCB = len & 0xfffe0000;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 15:
if (len & 0x10000) {
const nCB = len & 0xffff0000;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 16:
if (len & 0x8000) {
const nCB = len & 0xffff8000;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 17:
if (len & 0x4000) {
const nCB = len & 0xffffc000;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 18:
if (len & 0x2000) {
const nCB = len & 0xffffe000;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 19:
if (len & 0x1000) {
const nCB = len & 0xfffff000;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 20:
if (len & 0x800) {
const nCB = len & 0xfffff800;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 21:
if (len & 0x400) {
const nCB = len & 0xfffffc00;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 22:
if (len & 0x200) {
const nCB = len & 0xfffffe00;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 23:
if (len & 0x100) {
const nCB = len & 0xffffff00;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 24:
if (len & 0x80) {
const nCB = len & 0xffffff80;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 25:
if (len & 0x40) {
const nCB = len & 0xffffffc0;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 26:
if (len & 0x20) {
const nCB = len & 0xffffffe0;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 27:
if (len & 0x10) {
const nCB = len & 0xfffffff0;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 28:
if (len & 0x8) {
const nCB = len & 0xfffffff8;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 29:
if (len & 0x4) {
const nCB = len & 0xfffffffc;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 30:
if (len & 0x2) {
const nCB = len & 0xfffffffe;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 31:
if (len & 0x1) {
const nCB = len & 0xffffffff;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
}
// MODIFICATION: Instead of returning the index, this binary search
// instead returns whether something was found or not.
if (array[len|0] !== sValue) {
return true; // preserve the value at this index
} else {
return false; // eliminate the value at this index
}
};
}
请参阅我的其他文章,以了解有关所用二进制搜索算法的更多详细信息
如果您对文件大小有些担心(我尊重),那么您可能会牺牲一些性能,以便大大减小文件大小并增加可维护性。
function sortAnyArray(a,b) { return a>b ? 1 : (a===b ? 0 : -1); }
function sortIntArray(a,b) { return (a|0) - (b|0) |0; }
function fastFilter(array, handle) {
var out=[], value=0;
for (var i=0, len=array.length|0; i < len; i=i+1|0)
if (handle(value = array[i]))
out.push( value );
return out;
}
/* USAGE:
filterArrayByAnotherArray(
[1,3,5],
[2,3,4]
) yields [1, 5], and it can work with strings too
*/
function filterArrayByAnotherArray(searchArray, filterArray) {
if (
// NOTE: This does not check the whole array. But, if you know
// that there are only strings or numbers (not a mix of
// both) in the array, then this is a safe assumption.
typeof searchArray[0] == "number" &&
typeof filterArray[0] == "number" &&
(searchArray[0]|0) === searchArray[0] &&
(filterArray[0]|0) === filterArray[0]
) {
// if all entries in both arrays are integers
searchArray.sort(sortIntArray);
filterArray.sort(sortIntArray);
} else {
searchArray.sort(sortAnyArray);
filterArray.sort(sortAnyArray);
}
// Progressive Linear Search
var i = 0;
return fastFilter(searchArray, function(currentValue){
while (filterArray[i] < currentValue) i=i+1|0;
// +undefined = NaN, which is always false for <, avoiding an infinite loop
return filterArray[i] !== currentValue;
});
}
为了证明速度的差异,让我们研究一些JSPerfs。对于过滤由16个元素组成的数组,二进制搜索比indexOf快大约17%,而filterArrayByAnotherArray比indexOf快93%。对于过滤256个元素的数组,二进制搜索比indexOf快大约291%,而filterArrayByAnotherArray比indexOf快353%。对于过滤4096个元素的数组,二进制搜索比indexOf快大约2655%,而filterArrayByAnotherArray比indexOf快大约4627%。
反向滤波(与门类似)
上一节提供了获取数组A和数组B并删除A中存在于B中的所有元素的代码:
filterArrayByAnotherArray(
[1,3,5],
[2,3,4]
);
// yields [1, 5]
下一部分将提供用于反向过滤的代码,其中我们从A中删除了B中不存在的所有元素。此过程在功能上等同于仅保留A和B共同的元素,例如AND门:
reverseFilterArrayByAnotherArray(
[1,3,5],
[2,3,4]
);
// yields [3]
这是反向过滤的代码:
function sortAnyArray(a,b) { return a>b ? 1 : (a===b ? 0 : -1); }
function sortIntArray(a,b) { return (a|0) - (b|0) |0; }
function fastFilter(array, handle) {
var out=[], value=0;
for (var i=0, len=array.length|0; i < len; i=i+1|0)
if (handle(value = array[i]))
out.push( value );
return out;
}
const Math_clz32 = Math.clz32 || (function(log, LN2){
return function(x) {
return 31 - log(x >>> 0) / LN2 | 0; // the "| 0" acts like math.floor
};
})(Math.log, Math.LN2);
/* USAGE:
reverseFilterArrayByAnotherArray(
[1,3,5],
[2,3,4]
) yields [3], and it can work with strings too
*/
function reverseFilterArrayByAnotherArray(searchArray, filterArray) {
if (
// NOTE: This does not check the whole array. But, if you know
// that there are only strings or numbers (not a mix of
// both) in the array, then this is a safe assumption.
// Always use `==` with `typeof` because browsers can optimize
// the `==` into `===` (ONLY IN THIS CIRCUMSTANCE)
typeof searchArray[0] == "number" &&
typeof filterArray[0] == "number" &&
(searchArray[0]|0) === searchArray[0] &&
(filterArray[0]|0) === filterArray[0]
) {
// if all entries in both arrays are integers
searchArray.sort(sortIntArray);
filterArray.sort(sortIntArray);
} else {
searchArray.sort(sortAnyArray);
filterArray.sort(sortAnyArray);
}
var searchArrayLen = searchArray.length, filterArrayLen = filterArray.length;
var progressiveLinearComplexity = ((searchArrayLen<<1) + filterArrayLen)>>>0
var binarySearchComplexity= (searchArrayLen * (32-Math_clz32(filterArrayLen-1)))>>>0;
// After computing the complexity, we can predict which algorithm will be the fastest
var i = 0;
if (progressiveLinearComplexity < binarySearchComplexity) {
// Progressive Linear Search
return fastFilter(searchArray, function(currentValue){
while (filterArray[i] < currentValue) i=i+1|0;
// +undefined = NaN, which is always false for <, avoiding an infinite loop
// For reverse filterning, I changed !== to ===
return filterArray[i] === currentValue;
});
} else {
// Binary Search
return fastFilter(
searchArray,
inverseFastestBinarySearch(filterArray)
);
}
}
// see https://stackoverflow.com/a/44981570/5601591 for implementation
// details about this binary search algorithim
function inverseFastestBinarySearch(array){
var initLen = (array.length|0) - 1 |0;
const compGoto = Math_clz32(initLen) & 31;
return function(sValue) {
var len = initLen |0;
switch (compGoto) {
case 0:
if (len & 0x80000000) {
const nCB = len & 0x80000000;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 1:
if (len & 0x40000000) {
const nCB = len & 0xc0000000;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 2:
if (len & 0x20000000) {
const nCB = len & 0xe0000000;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 3:
if (len & 0x10000000) {
const nCB = len & 0xf0000000;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 4:
if (len & 0x8000000) {
const nCB = len & 0xf8000000;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 5:
if (len & 0x4000000) {
const nCB = len & 0xfc000000;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 6:
if (len & 0x2000000) {
const nCB = len & 0xfe000000;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 7:
if (len & 0x1000000) {
const nCB = len & 0xff000000;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 8:
if (len & 0x800000) {
const nCB = len & 0xff800000;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 9:
if (len & 0x400000) {
const nCB = len & 0xffc00000;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 10:
if (len & 0x200000) {
const nCB = len & 0xffe00000;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 11:
if (len & 0x100000) {
const nCB = len & 0xfff00000;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 12:
if (len & 0x80000) {
const nCB = len & 0xfff80000;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 13:
if (len & 0x40000) {
const nCB = len & 0xfffc0000;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 14:
if (len & 0x20000) {
const nCB = len & 0xfffe0000;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 15:
if (len & 0x10000) {
const nCB = len & 0xffff0000;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 16:
if (len & 0x8000) {
const nCB = len & 0xffff8000;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 17:
if (len & 0x4000) {
const nCB = len & 0xffffc000;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 18:
if (len & 0x2000) {
const nCB = len & 0xffffe000;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 19:
if (len & 0x1000) {
const nCB = len & 0xfffff000;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 20:
if (len & 0x800) {
const nCB = len & 0xfffff800;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 21:
if (len & 0x400) {
const nCB = len & 0xfffffc00;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 22:
if (len & 0x200) {
const nCB = len & 0xfffffe00;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 23:
if (len & 0x100) {
const nCB = len & 0xffffff00;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 24:
if (len & 0x80) {
const nCB = len & 0xffffff80;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 25:
if (len & 0x40) {
const nCB = len & 0xffffffc0;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 26:
if (len & 0x20) {
const nCB = len & 0xffffffe0;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 27:
if (len & 0x10) {
const nCB = len & 0xfffffff0;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 28:
if (len & 0x8) {
const nCB = len & 0xfffffff8;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 29:
if (len & 0x4) {
const nCB = len & 0xfffffffc;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 30:
if (len & 0x2) {
const nCB = len & 0xfffffffe;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 31:
if (len & 0x1) {
const nCB = len & 0xffffffff;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
}
// MODIFICATION: Instead of returning the index, this binary search
// instead returns whether something was found or not.
// For reverse filterning, I swapped true with false and vice-versa
if (array[len|0] !== sValue) {
return false; // preserve the value at this index
} else {
return true; // eliminate the value at this index
}
};
}
有关反向过滤代码的较慢的较小版本,请参见下文。
function sortAnyArray(a,b) { return a>b ? 1 : (a===b ? 0 : -1); }
function sortIntArray(a,b) { return (a|0) - (b|0) |0; }
function fastFilter(array, handle) {
var out=[], value=0;
for (var i=0, len=array.length|0; i < len; i=i+1|0)
if (handle(value = array[i]))
out.push( value );
return out;
}
/* USAGE:
reverseFilterArrayByAnotherArray(
[1,3,5],
[2,3,4]
) yields [3], and it can work with strings too
*/
function reverseFilterArrayByAnotherArray(searchArray, filterArray) {
if (
// NOTE: This does not check the whole array. But, if you know
// that there are only strings or numbers (not a mix of
// both) in the array, then this is a safe assumption.
typeof searchArray[0] == "number" &&
typeof filterArray[0] == "number" &&
(searchArray[0]|0) === searchArray[0] &&
(filterArray[0]|0) === filterArray[0]
) {
// if all entries in both arrays are integers
searchArray.sort(sortIntArray);
filterArray.sort(sortIntArray);
} else {
searchArray.sort(sortAnyArray);
filterArray.sort(sortAnyArray);
}
// Progressive Linear Search
var i = 0;
return fastFilter(searchArray, function(currentValue){
while (filterArray[i] < currentValue) i=i+1|0;
// +undefined = NaN, which is always false for <, avoiding an infinite loop
// For reverse filter, I changed !== to ===
return filterArray[i] === currentValue;
});
}
OA也可以在ES6中实现,如下所示
ES6:
const filtered = [1, 2, 3, 4].filter(e => {
return this.indexOf(e) < 0;
},[2, 4]);
如果需要比较对象数组,则在所有情况下都可以使用:
let arr = [{ id: 1, title: "title1" },{ id: 2, title: "title2" }]
let brr = [{ id: 2, title: "title2" },{ id: 3, title: "title3" }]
const res = arr.filter(f => brr.some(item => item.id === f.id));
console.log(res);
最好的filter
功能描述是https://developer.mozilla.org/pl/docs/Web/JavaScript/Referencje/Obiekty/Array/filter
您应该简单地调节函数:
function conditionFun(element, index, array) {
return element >= 10;
}
filtered = [12, 5, 8, 130, 44].filter(conditionFun);
而且您无法在分配变量值之前访问它
您可以设置过滤器功能以遍历“过滤器阵列”。
var arr = [1, 2, 3 ,4 ,5, 6, 7];
var filter = [4, 5, 6];
var filtered = arr.filter(
function(val) {
for (var i = 0; i < filter.length; i++) {
if (val == filter[i]) {
return false;
}
}
return true;
}
);
您可以使用过滤器,然后对过滤器函数使用过滤数组的精简形式,该数组将在找到匹配项时检查并返回true,然后在返回(!)时反转。过滤器函数对数组中的每个元素调用一次。您不对帖子中函数中的任何元素进行比较。
var a1 = [1, 2, 3, 4],
a2 = [2, 3];
var filtered = a1.filter(function(x) {
return !a2.reduce(function(y, z) {
return x == y || x == z || y == true;
})
});
document.write(filtered);
var arr1= [1,2,3,4];
var arr2=[2,4]
function fil(value){
return value !=arr2[0] && value != arr2[1]
}
document.getElementById("p").innerHTML= arr1.filter(fil)
<!DOCTYPE html>
<html>
<head>
</head>
<body>
<p id="p"></p>
function arr(arr1,arr2){
function filt(value){
return arr2.indexOf(value) === -1;
}
return arr1.filter(filt)
}
document.getElementById("p").innerHTML = arr([1,2,3,4],[2,4])
<p id="p"></p>
来自另一个包含对象属性的数组的更灵活的过滤数组
function filterFn(array, diffArray, prop, propDiff) {
diffArray = !propDiff ? diffArray : diffArray.map(d => d[propDiff])
this.fn = f => diffArray.indexOf(f) === -1
if (prop) {
return array.map(r => r[prop]).filter(this.fn)
} else {
return array.filter(this.fn)
}
}
//You can use it like this;
var arr = [];
for (var i = 0; i < 10; i++) {
var obj = {}
obj.index = i
obj.value = Math.pow(2, i)
arr.push(obj)
}
var arr2 = [1, 2, 3, 4, 5]
var sec = [{t:2}, {t:99}, {t:256}, {t:4096}]
var log = console.log.bind(console)
var filtered = filterFn(arr, sec, 'value', 't')
var filtered2 = filterFn(arr2, sec, null, 't')
log(filtered, filtered2)
您可以编写一个通用的filterByIndex()函数,并在TS中使用类型推断来使用回调函数来节省麻烦:
假设您要使用[2,4]数组中指定的索引来过滤()数组[1,2,3,4]。
var filtered = [1,2,3,4,].filter(byIndex(element => element, [2,4]))
byIndex函数需要element函数和一个数组,如下所示:
byIndex = (getter: (e:number) => number, arr: number[]) => (x: number) => {
var i = getter(x);
return arr.indexOf(i);
}
结果是
filtered = [1,3]
以下示例用于new Set()
创建仅包含唯一元素的过滤数组:
具有原始数据类型的数组:字符串,数字,布尔值,null,未定义,符号:
const a = [1, 2, 3, 4];
const b = [3, 4, 5];
const c = Array.from(new Set(a.concat(b)));
以对象作为项目的数组:
const a = [{id:1}, {id: 2}, {id: 3}, {id: 4}];
const b = [{id: 3}, {id: 4}, {id: 5}];
const stringifyObject = o => JSON.stringify(o);
const parseString = s => JSON.parse(s);
const c = Array.from(new Set(a.concat(b).map(stringifyObject)), parseString);
下面是一个例子
let firstArray=[1,2,3,4,5];
let secondArray=[2,3];
let filteredArray = firstArray.filter((a) => secondArray.indexOf(a)<0);
console.log(filteredArray); //above line gives [1,4,5]
Jack Giffin的解决方案很棒,但不适用于数字大于2 ^ 32的数组。以下是重构的快速版本,可根据Jack的解决方案过滤阵列,但适用于64位阵列。
const Math_clz32 = Math.clz32 || ((log, LN2) => x => 31 - log(x >>> 0) / LN2 | 0)(Math.log, Math.LN2);
const filterArrayByAnotherArray = (searchArray, filterArray) => {
searchArray.sort((a,b) => a > b);
filterArray.sort((a,b) => a > b);
let searchArrayLen = searchArray.length, filterArrayLen = filterArray.length;
let progressiveLinearComplexity = ((searchArrayLen<<1) + filterArrayLen)>>>0
let binarySearchComplexity = (searchArrayLen * (32-Math_clz32(filterArrayLen-1)))>>>0;
let i = 0;
if (progressiveLinearComplexity < binarySearchComplexity) {
return searchArray.filter(currentValue => {
while (filterArray[i] < currentValue) i=i+1|0;
return filterArray[i] !== currentValue;
});
}
else return searchArray.filter(e => binarySearch(filterArray, e) === null);
}
const binarySearch = (sortedArray, elToFind) => {
let lowIndex = 0;
let highIndex = sortedArray.length - 1;
while (lowIndex <= highIndex) {
let midIndex = Math.floor((lowIndex + highIndex) / 2);
if (sortedArray[midIndex] == elToFind) return midIndex;
else if (sortedArray[midIndex] < elToFind) lowIndex = midIndex + 1;
else highIndex = midIndex - 1;
} return null;
}
文章标签:arrays , filter , javascript
版权声明:本文为原创文章,版权归 javascript 所有,欢迎分享本文,转载请保留出处!
评论已关闭!