# 如何从另一个数组的所有元素中过滤一个数组

2020/11/10 08:23 · javascript ·  · 0评论

``````var array = [1,2,3,4];
var anotherOne = [2,4];
var filteredArray = array.filter(myCallback);
// filteredArray should now be [1,3]

function myCallBack(){
return element ! filteredArray;
//which clearly can't work since we don't have the reference <,<
}
``````

``````var filtered = [1, 2, 3, 4].filter(
function(e) {
return this.indexOf(e) < 0;
},
[2, 4]
);
console.log(filtered);``````

``````var arr = [1,2,3,4],
brr = [2,4],
res = arr.filter(f => !brr.includes(f));
console.log(res);``````
``````var array = [1,2,3,4];
var anotherOne = [2,4];
var filteredArray = array.filter(myCallBack);

function myCallBack(el){
return anotherOne.indexOf(el) < 0;
}
``````

https://jsfiddle.net/0tsyc1sx/

``````filteredArray = _.difference(array, anotherOne);
``````

``````var array = [{id :1, name :"test1"},{id :2, name :"test2"},{id :3, name :"test3"},{id :4, name :"test4"}];

var anotherOne = [{id :2, name :"test2"}, {id :4, name :"test4"}];

var filteredArray  = array.filter(function(array_el){
return anotherOne.filter(function(anotherOne_el){
return anotherOne_el.id == array_el.id;
}).length == 0
});
``````

``````        /* Here's an example that uses (some) ES6 Javascript semantics to filter an object array by another object array. */

// x = full dataset
// y = filter dataset
let x = [
{"val": 1, "text": "a"},
{"val": 2, "text": "b"},
{"val": 3, "text": "c"},
{"val": 4, "text": "d"},
{"val": 5, "text": "e"}
],
y = [
{"val": 1, "text": "a"},
{"val": 4, "text": "d"}
];

// Use map to get a simple array of "val" values. Ex: [1,4]
let yFilter = y.map(itemY => { return itemY.val; });

// Use filter and "not" includes to filter the full dataset by the filter dataset's val.
let filteredX = x.filter(itemX => !yFilter.includes(itemX.val));

// Print the result.
console.log(filteredX);``````

``````let array1 = [1, 3, 47, 1, 6, 7];
let array2 = [3, 6];
let filteredArray1 = array1.filter(el => array2.includes(el));
console.log(filteredArray1); ``````

``````var array = [1,2,3,4];
var anotherOne = [2,4];
var filteredArray = array.filter(x => anotherOne.indexOf(x) < 0);
``````

``````function sortAnyArray(a,b) { return a>b ? 1 : (a===b ? 0 : -1); }
function sortIntArray(a,b) { return (a|0) - (b|0) |0; }
function fastFilter(array, handle) {
var out=[], value=0;
for (var i=0,  len=array.length|0; i < len; i=i+1|0)
if (handle(value = array[i]))
out.push( value );
return out;
}

const Math_clz32 = Math.clz32 || (function(log, LN2){
return function(x) {
return 31 - log(x >>> 0) / LN2 | 0; // the "| 0" acts like math.floor
};
})(Math.log, Math.LN2);

/* USAGE:
filterArrayByAnotherArray(
[1,3,5],
[2,3,4]
) yields [1, 5], and it can work with strings too
*/
function filterArrayByAnotherArray(searchArray, filterArray) {
if (
// NOTE: This does not check the whole array. But, if you know
//        that there are only strings or numbers (not a mix of
//        both) in the array, then this is a safe assumption.
// Always use `==` with `typeof` because browsers can optimize
//  the `==` into `===` (ONLY IN THIS CIRCUMSTANCE)
typeof searchArray[0] == "number" &&
typeof filterArray[0] == "number" &&
(searchArray[0]|0) === searchArray[0] &&
(filterArray[0]|0) === filterArray[0]
) {filterArray
// if all entries in both arrays are integers
searchArray.sort(sortIntArray);
filterArray.sort(sortIntArray);
} else {
searchArray.sort(sortAnyArray);
filterArray.sort(sortAnyArray);
}
var searchArrayLen = searchArray.length, filterArrayLen = filterArray.length;
var progressiveLinearComplexity = ((searchArrayLen<<1) + filterArrayLen)>>>0
var binarySearchComplexity= (searchArrayLen * (32-Math_clz32(filterArrayLen-1)))>>>0;
// After computing the complexity, we can predict which algorithm will be the fastest
var i = 0;
if (progressiveLinearComplexity < binarySearchComplexity) {
// Progressive Linear Search
return fastFilter(searchArray, function(currentValue){
while (filterArray[i] < currentValue) i=i+1|0;
// +undefined = NaN, which is always false for <, avoiding an infinite loop
return filterArray[i] !== currentValue;
});
} else {
// Binary Search
return fastFilter(
searchArray,
fastestBinarySearch(filterArray)
);
}
}

// see https://stackoverflow.com/a/44981570/5601591 for implementation

function fastestBinarySearch(array){
var initLen = (array.length|0) - 1 |0;

const compGoto = Math_clz32(initLen) & 31;
return function(sValue) {
var len = initLen |0;
switch (compGoto) {
case 0:
if (len & 0x80000000) {
const nCB = len & 0x80000000;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 1:
if (len & 0x40000000) {
const nCB = len & 0xc0000000;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 2:
if (len & 0x20000000) {
const nCB = len & 0xe0000000;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 3:
if (len & 0x10000000) {
const nCB = len & 0xf0000000;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 4:
if (len & 0x8000000) {
const nCB = len & 0xf8000000;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 5:
if (len & 0x4000000) {
const nCB = len & 0xfc000000;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 6:
if (len & 0x2000000) {
const nCB = len & 0xfe000000;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 7:
if (len & 0x1000000) {
const nCB = len & 0xff000000;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 8:
if (len & 0x800000) {
const nCB = len & 0xff800000;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 9:
if (len & 0x400000) {
const nCB = len & 0xffc00000;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 10:
if (len & 0x200000) {
const nCB = len & 0xffe00000;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 11:
if (len & 0x100000) {
const nCB = len & 0xfff00000;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 12:
if (len & 0x80000) {
const nCB = len & 0xfff80000;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 13:
if (len & 0x40000) {
const nCB = len & 0xfffc0000;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 14:
if (len & 0x20000) {
const nCB = len & 0xfffe0000;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 15:
if (len & 0x10000) {
const nCB = len & 0xffff0000;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 16:
if (len & 0x8000) {
const nCB = len & 0xffff8000;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 17:
if (len & 0x4000) {
const nCB = len & 0xffffc000;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 18:
if (len & 0x2000) {
const nCB = len & 0xffffe000;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 19:
if (len & 0x1000) {
const nCB = len & 0xfffff000;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 20:
if (len & 0x800) {
const nCB = len & 0xfffff800;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 21:
if (len & 0x400) {
const nCB = len & 0xfffffc00;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 22:
if (len & 0x200) {
const nCB = len & 0xfffffe00;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 23:
if (len & 0x100) {
const nCB = len & 0xffffff00;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 24:
if (len & 0x80) {
const nCB = len & 0xffffff80;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 25:
if (len & 0x40) {
const nCB = len & 0xffffffc0;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 26:
if (len & 0x20) {
const nCB = len & 0xffffffe0;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 27:
if (len & 0x10) {
const nCB = len & 0xfffffff0;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 28:
if (len & 0x8) {
const nCB = len & 0xfffffff8;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 29:
if (len & 0x4) {
const nCB = len & 0xfffffffc;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 30:
if (len & 0x2) {
const nCB = len & 0xfffffffe;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 31:
if (len & 0x1) {
const nCB = len & 0xffffffff;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
}
// MODIFICATION: Instead of returning the index, this binary search
//                instead returns whether something was found or not.
if (array[len|0] !== sValue) {
return true; // preserve the value at this index
} else {
return false; // eliminate the value at this index
}
};
}
``````

``````function sortAnyArray(a,b) { return a>b ? 1 : (a===b ? 0 : -1); }
function sortIntArray(a,b) { return (a|0) - (b|0) |0; }
function fastFilter(array, handle) {
var out=[], value=0;
for (var i=0,  len=array.length|0; i < len; i=i+1|0)
if (handle(value = array[i]))
out.push( value );
return out;
}

/* USAGE:
filterArrayByAnotherArray(
[1,3,5],
[2,3,4]
) yields [1, 5], and it can work with strings too
*/
function filterArrayByAnotherArray(searchArray, filterArray) {
if (
// NOTE: This does not check the whole array. But, if you know
//        that there are only strings or numbers (not a mix of
//        both) in the array, then this is a safe assumption.
typeof searchArray[0] == "number" &&
typeof filterArray[0] == "number" &&
(searchArray[0]|0) === searchArray[0] &&
(filterArray[0]|0) === filterArray[0]
) {
// if all entries in both arrays are integers
searchArray.sort(sortIntArray);
filterArray.sort(sortIntArray);
} else {
searchArray.sort(sortAnyArray);
filterArray.sort(sortAnyArray);
}
// Progressive Linear Search
var i = 0;
return fastFilter(searchArray, function(currentValue){
while (filterArray[i] < currentValue) i=i+1|0;
// +undefined = NaN, which is always false for <, avoiding an infinite loop
return filterArray[i] !== currentValue;
});
}
``````

# 反向滤波（与门类似）

``````filterArrayByAnotherArray(
[1,3,5],
[2,3,4]
);
// yields [1, 5]
``````

``````reverseFilterArrayByAnotherArray(
[1,3,5],
[2,3,4]
);
// yields [3]
``````

``````function sortAnyArray(a,b) { return a>b ? 1 : (a===b ? 0 : -1); }
function sortIntArray(a,b) { return (a|0) - (b|0) |0; }
function fastFilter(array, handle) {
var out=[], value=0;
for (var i=0,  len=array.length|0; i < len; i=i+1|0)
if (handle(value = array[i]))
out.push( value );
return out;
}

const Math_clz32 = Math.clz32 || (function(log, LN2){
return function(x) {
return 31 - log(x >>> 0) / LN2 | 0; // the "| 0" acts like math.floor
};
})(Math.log, Math.LN2);

/* USAGE:
reverseFilterArrayByAnotherArray(
[1,3,5],
[2,3,4]
) yields [3], and it can work with strings too
*/
function reverseFilterArrayByAnotherArray(searchArray, filterArray) {
if (
// NOTE: This does not check the whole array. But, if you know
//        that there are only strings or numbers (not a mix of
//        both) in the array, then this is a safe assumption.
// Always use `==` with `typeof` because browsers can optimize
//  the `==` into `===` (ONLY IN THIS CIRCUMSTANCE)
typeof searchArray[0] == "number" &&
typeof filterArray[0] == "number" &&
(searchArray[0]|0) === searchArray[0] &&
(filterArray[0]|0) === filterArray[0]
) {
// if all entries in both arrays are integers
searchArray.sort(sortIntArray);
filterArray.sort(sortIntArray);
} else {
searchArray.sort(sortAnyArray);
filterArray.sort(sortAnyArray);
}
var searchArrayLen = searchArray.length, filterArrayLen = filterArray.length;
var progressiveLinearComplexity = ((searchArrayLen<<1) + filterArrayLen)>>>0
var binarySearchComplexity= (searchArrayLen * (32-Math_clz32(filterArrayLen-1)))>>>0;
// After computing the complexity, we can predict which algorithm will be the fastest
var i = 0;
if (progressiveLinearComplexity < binarySearchComplexity) {
// Progressive Linear Search
return fastFilter(searchArray, function(currentValue){
while (filterArray[i] < currentValue) i=i+1|0;
// +undefined = NaN, which is always false for <, avoiding an infinite loop
// For reverse filterning, I changed !== to ===
return filterArray[i] === currentValue;
});
} else {
// Binary Search
return fastFilter(
searchArray,
inverseFastestBinarySearch(filterArray)
);
}
}

// see https://stackoverflow.com/a/44981570/5601591 for implementation

function inverseFastestBinarySearch(array){
var initLen = (array.length|0) - 1 |0;

const compGoto = Math_clz32(initLen) & 31;
return function(sValue) {
var len = initLen |0;
switch (compGoto) {
case 0:
if (len & 0x80000000) {
const nCB = len & 0x80000000;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 1:
if (len & 0x40000000) {
const nCB = len & 0xc0000000;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 2:
if (len & 0x20000000) {
const nCB = len & 0xe0000000;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 3:
if (len & 0x10000000) {
const nCB = len & 0xf0000000;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 4:
if (len & 0x8000000) {
const nCB = len & 0xf8000000;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 5:
if (len & 0x4000000) {
const nCB = len & 0xfc000000;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 6:
if (len & 0x2000000) {
const nCB = len & 0xfe000000;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 7:
if (len & 0x1000000) {
const nCB = len & 0xff000000;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 8:
if (len & 0x800000) {
const nCB = len & 0xff800000;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 9:
if (len & 0x400000) {
const nCB = len & 0xffc00000;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 10:
if (len & 0x200000) {
const nCB = len & 0xffe00000;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 11:
if (len & 0x100000) {
const nCB = len & 0xfff00000;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 12:
if (len & 0x80000) {
const nCB = len & 0xfff80000;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 13:
if (len & 0x40000) {
const nCB = len & 0xfffc0000;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 14:
if (len & 0x20000) {
const nCB = len & 0xfffe0000;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 15:
if (len & 0x10000) {
const nCB = len & 0xffff0000;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 16:
if (len & 0x8000) {
const nCB = len & 0xffff8000;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 17:
if (len & 0x4000) {
const nCB = len & 0xffffc000;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 18:
if (len & 0x2000) {
const nCB = len & 0xffffe000;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 19:
if (len & 0x1000) {
const nCB = len & 0xfffff000;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 20:
if (len & 0x800) {
const nCB = len & 0xfffff800;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 21:
if (len & 0x400) {
const nCB = len & 0xfffffc00;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 22:
if (len & 0x200) {
const nCB = len & 0xfffffe00;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 23:
if (len & 0x100) {
const nCB = len & 0xffffff00;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 24:
if (len & 0x80) {
const nCB = len & 0xffffff80;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 25:
if (len & 0x40) {
const nCB = len & 0xffffffc0;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 26:
if (len & 0x20) {
const nCB = len & 0xffffffe0;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 27:
if (len & 0x10) {
const nCB = len & 0xfffffff0;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 28:
if (len & 0x8) {
const nCB = len & 0xfffffff8;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 29:
if (len & 0x4) {
const nCB = len & 0xfffffffc;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 30:
if (len & 0x2) {
const nCB = len & 0xfffffffe;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
case 31:
if (len & 0x1) {
const nCB = len & 0xffffffff;
len ^= (len ^ (nCB-1)) & ((array[nCB] <= sValue |0) - 1 >>>0);
}
}
// MODIFICATION: Instead of returning the index, this binary search
//                instead returns whether something was found or not.
// For reverse filterning, I swapped true with false and vice-versa
if (array[len|0] !== sValue) {
return false; // preserve the value at this index
} else {
return true; // eliminate the value at this index
}
};
}
``````

``````function sortAnyArray(a,b) { return a>b ? 1 : (a===b ? 0 : -1); }
function sortIntArray(a,b) { return (a|0) - (b|0) |0; }
function fastFilter(array, handle) {
var out=[], value=0;
for (var i=0,  len=array.length|0; i < len; i=i+1|0)
if (handle(value = array[i]))
out.push( value );
return out;
}

/* USAGE:
reverseFilterArrayByAnotherArray(
[1,3,5],
[2,3,4]
) yields [3], and it can work with strings too
*/
function reverseFilterArrayByAnotherArray(searchArray, filterArray) {
if (
// NOTE: This does not check the whole array. But, if you know
//        that there are only strings or numbers (not a mix of
//        both) in the array, then this is a safe assumption.
typeof searchArray[0] == "number" &&
typeof filterArray[0] == "number" &&
(searchArray[0]|0) === searchArray[0] &&
(filterArray[0]|0) === filterArray[0]
) {
// if all entries in both arrays are integers
searchArray.sort(sortIntArray);
filterArray.sort(sortIntArray);
} else {
searchArray.sort(sortAnyArray);
filterArray.sort(sortAnyArray);
}
// Progressive Linear Search
var i = 0;
return fastFilter(searchArray, function(currentValue){
while (filterArray[i] < currentValue) i=i+1|0;
// +undefined = NaN, which is always false for <, avoiding an infinite loop
// For reverse filter, I changed !== to ===
return filterArray[i] === currentValue;
});
}
``````

OA也可以在ES6中实现，如下所示

ES6：

`````` const filtered = [1, 2, 3, 4].filter(e => {
return this.indexOf(e) < 0;
},[2, 4]);
``````

``````let arr = [{ id: 1, title: "title1" },{ id: 2, title: "title2" }]
let brr = [{ id: 2, title: "title2" },{ id: 3, title: "title3" }]

const res = arr.filter(f => brr.some(item => item.id === f.id));
console.log(res);
``````

``````function conditionFun(element, index, array) {
return element >= 10;
}
filtered = [12, 5, 8, 130, 44].filter(conditionFun);
``````

``````var arr = [1, 2, 3 ,4 ,5, 6, 7];
var filter = [4, 5, 6];

var filtered = arr.filter(
function(val) {
for (var i = 0; i < filter.length; i++) {
if (val == filter[i]) {
return false;
}
}
return true;
}
);
``````

``````var a1 = [1, 2, 3, 4],
a2 = [2, 3];

var filtered = a1.filter(function(x) {
return !a2.reduce(function(y, z) {
return x == y || x == z || y == true;
})
});

document.write(filtered);``````
``````var arr1= [1,2,3,4];
var arr2=[2,4]

function fil(value){
return value !=arr2[0] &&  value != arr2[1]
}

document.getElementById("p").innerHTML= arr1.filter(fil)``````
``````<!DOCTYPE html>
<html>
<body>
<p id="p"></p>``````
``````function arr(arr1,arr2){

function filt(value){
return arr2.indexOf(value) === -1;
}

return arr1.filter(filt)
}

document.getElementById("p").innerHTML = arr([1,2,3,4],[2,4])``````
``<p id="p"></p>``

``````function filterFn(array, diffArray, prop, propDiff) {
diffArray = !propDiff ? diffArray : diffArray.map(d => d[propDiff])
this.fn = f => diffArray.indexOf(f) === -1
if (prop) {
return array.map(r => r[prop]).filter(this.fn)
} else {
return array.filter(this.fn)
}
}

//You can use it like this;

var arr = [];

for (var i = 0; i < 10; i++) {
var obj = {}
obj.index = i
obj.value = Math.pow(2, i)
arr.push(obj)
}

var arr2 = [1, 2, 3, 4, 5]

var sec = [{t:2}, {t:99}, {t:256}, {t:4096}]

var log = console.log.bind(console)

var filtered = filterFn(arr, sec, 'value', 't')

var filtered2 = filterFn(arr2, sec, null, 't')

log(filtered, filtered2)``````

``````var filtered = [1,2,3,4,].filter(byIndex(element => element, [2,4]))
``````

byIndex函数需要element函数和一个数组，如下所示：

``````byIndex = (getter: (e:number) => number, arr: number[]) => (x: number) => {
var i = getter(x);
return arr.indexOf(i);
}
``````

``````filtered = [1,3]
``````

``````const a = [1, 2, 3, 4];
const b = [3, 4, 5];
const c = Array.from(new Set(a.concat(b)));
``````

``````const a = [{id:1}, {id: 2}, {id: 3}, {id: 4}];
const b = [{id: 3}, {id: 4}, {id: 5}];
const stringifyObject = o => JSON.stringify(o);
const parseString = s => JSON.parse(s);
const c = Array.from(new Set(a.concat(b).map(stringifyObject)), parseString);
``````

``````let firstArray=[1,2,3,4,5];
let secondArray=[2,3];
let filteredArray = firstArray.filter((a) => secondArray.indexOf(a)<0);
console.log(filteredArray); //above line gives [1,4,5]``````

Jack Giffin的解决方案很棒，但不适用于数字大于2 ^ 32的数组。以下是重构的快速版本，可根据Jack的解决方案过滤阵列，但适用于64位阵列。

``````const Math_clz32 = Math.clz32 || ((log, LN2) => x => 31 - log(x >>> 0) / LN2 | 0)(Math.log, Math.LN2);

const filterArrayByAnotherArray = (searchArray, filterArray) => {

searchArray.sort((a,b) => a > b);
filterArray.sort((a,b) => a > b);

let searchArrayLen = searchArray.length, filterArrayLen = filterArray.length;
let progressiveLinearComplexity = ((searchArrayLen<<1) + filterArrayLen)>>>0
let binarySearchComplexity = (searchArrayLen * (32-Math_clz32(filterArrayLen-1)))>>>0;

let i = 0;

if (progressiveLinearComplexity < binarySearchComplexity) {
return searchArray.filter(currentValue => {
while (filterArray[i] < currentValue) i=i+1|0;
return filterArray[i] !== currentValue;
});
}
else return searchArray.filter(e => binarySearch(filterArray, e) === null);
}

const binarySearch = (sortedArray, elToFind) => {
let lowIndex = 0;
let highIndex = sortedArray.length - 1;
while (lowIndex <= highIndex) {
let midIndex = Math.floor((lowIndex + highIndex) / 2);
if (sortedArray[midIndex] == elToFind) return midIndex;
else if (sortedArray[midIndex] < elToFind) lowIndex = midIndex + 1;
else highIndex = midIndex - 1;
} return null;
}
``````